A TMS DSP PROCESSOR BASED CASE STUDY OF GRIGORYAN FFT PERFORMANCE OVER COOLEY-TUKEY FFT (TMS320C5416, TMS320C5515)
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Frequency analysis plays vital role in the applications like cryptanalysis, steganalysis [6], system identification, controller tuning, speech recognition, noise filters, etc. Discrete Fourier Transform (DFT) is a principal mathematical method for the frequency analysis. The way of splitting the DFT gives out various fast algorithms. In this paper, we present the implementation of two fast algorithms for the DFT for evaluating their performance. One of them is the popular radix-2 Cooley-Tukey fast Fourier transform algorithm (FFT) [1] and the other one is the Grigoryan FFT based on the splitting by the paired transform [2]. We evaluate the performance of these algorithms by implementing them on the TMS320C5515 and TMS320C5416 DSPs. We developed C programming for these DSP processors. Finally we show that the paired-transform based algorithm of the FFT is faster than the radix-2 FFT, consequently it is useful for higher sampling rates. Working at higher data rates is a challenge in the applications of Digital Signal Processing.
How to Cite
##plugins.themes.bootstrap3.article.details##
COPYRIGHT AGREEMENT AND AUTHORSHIP RESPONSIBILITY
Â
All paper submissions must carry the following duly signed by all the authors:
“I certify that I have participated sufficiently in the conception and design of this work and the analysis of the data (wherever applicable), as well as the writing of the manuscript, to take public responsibility for it. I believe the manuscript represents valid work. I have reviewed the final version of the manuscript and approve it for publication. Neither has the manuscript nor one with substantially similar content under my authorship been published nor is being considered for publication elsewhere, except as described in an attachment. Furthermore I attest that I shall produce the data upon which the manuscript is based for examination by the editors or their assignees, if requested.â€