PERFORMANCE COMPARISON OF DATA MINING TECHNIQUES FOR PREDICTION AND DIAGNOSIS OF BREAST CANCER DISEASE SURVIVABILITY

Main Article Content

Article Sidebar

Published Oct 13, 2013
K.R.Lakshmi*, M.Veera Krishna, S.Prem Kumar

Abstract

The prediction of breast cancer survivability has been a challenging research problem for many researchers. Since the early dates of the related research, much advancement has been recorded in several related fields. For instance, thanks to innovative biomedical technologies, better explanatory prognostic factors are being measured and recorded; thanks to low cost computer hardware and software technologies, high volume better quality data is being collected and stored automatically; and finally thanks to better analytical methods, those voluminous data is being processed effectively and efficiently. Breast cancer is one of the leading cancers for women in developed countries including India. It is the second most common cause of cancer death in women. The high incidence of breast cancer in women has increased significantly in the last years. In this paper we have discussed various data mining approaches that have been utilized for breast cancer diagnosis and prognosis. Breast Cancer Diagnosis is distinguishing of benign from malignant breast lumps and Breast Cancer Prognosis predicts when Breast Cancer is to recur in patients that have had their cancers excised. This study paper summarizes various review and technical articles on breast cancer diagnosis and prognosis also we focus on current research being carried out using the data mining techniques to enhance the breast cancer diagnosis and prognosis. In this paper, we took advantage of those available technological advancements to develop the best prediction model for breast cancer survivability.
Abstract 151 | PDF Downloads 334

Article Details

Section
Articles