AN EFFECTIVE INFORMATION RETRIEVAL FOR AMBIGUOUS QUERY
Main Article Content
Article Sidebar
Abstract
Search engine returns thousands of web pages for a single user query, in which most of them are not relevant. In this context, effective information retrieval from the expanding web is a challenging task, in particular, if the query is ambiguous. The major question arises here is that how to get the relevant pages for an ambiguous query. We propose an approach for the effective result of an ambiguous query by forming community vectors based on association concept of data mining using vector space model and the freedictionary. We develop clusters by computing the similarity between community vectors and document vectors formed from the extracted web pages by the search engine. We use Gensim package to implement the algorithm because of its simplicity and robust nature. Analysis shows that our approach is an effective way to form clusters for an ambiguous query.
Article Details
COPYRIGHT AGREEMENT AND AUTHORSHIP RESPONSIBILITY
 All paper submissions must carry the following duly signed by all the authors:
“I certify that I have participated sufficiently in the conception and design of this work and the analysis of the data (wherever applicable), as well as the writing of the manuscript, to take public responsibility for it. I believe the manuscript represents valid work. I have reviewed the final version of the manuscript and approve it for publication. Neither has the manuscript nor one with substantially similar content under my authorship been published nor is being considered for publication elsewhere, except as described in an attachment. Furthermore I attest that I shall produce the data upon which the manuscript is based for examination by the editors or their assignees, if requested.â€