ONLINE SIGNATURE VERIFICATION USING BAGGED SVM CLASSIFIER
Main Article Content
Article Sidebar
Abstract
 Data Mining is the use of algorithms to extract the information and patterns derived by the knowledge discovery in databases process. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. The Verification of handwritten Signature, which is a behavioral biometric, can be classified into off-line and online signature verification methods. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: online Signature Verification This paper addresses using ensemble approach of Support Vector Machine for online Signature Verification. Online signature verification, in general, gives a higher verification rate than off-line verification methods, because of its use of both static and dynamic features of problem space in contrast to off-line which uses only the static features. We show that proposed ensemble of Support Vector Machine is superior to individual approach for Signature Verification in terms of classification rate.
Article Details
COPYRIGHT AGREEMENT AND AUTHORSHIP RESPONSIBILITY
 All paper submissions must carry the following duly signed by all the authors:
“I certify that I have participated sufficiently in the conception and design of this work and the analysis of the data (wherever applicable), as well as the writing of the manuscript, to take public responsibility for it. I believe the manuscript represents valid work. I have reviewed the final version of the manuscript and approve it for publication. Neither has the manuscript nor one with substantially similar content under my authorship been published nor is being considered for publication elsewhere, except as described in an attachment. Furthermore I attest that I shall produce the data upon which the manuscript is based for examination by the editors or their assignees, if requested.â€